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ABSTRACT  
Fully autonomous flight for certifiable commercial flying vehicles is currently far in time. We present an 
approach to develop advanced environmental perception functions to improve external situational 
awareness of pilots and autonomous flight mission management systems, to enhance safety, increase 
survivability and to expand the envelope of potential operations achievable by the vehicles. Our approach is 
based on a simulation environment capable of simulating different sensor modalities (such as visible 
camera, LiDAR, and RADAR) validated with real-world sensor data. We also describe the requirements that 
such environment must have to prove its usefulness towards the goal of autonomous-flight function 
development. 

1.0 INTRODUCTION 

A possibility to achieve autonomous flight on flying vehicles and especially helicopters is to imitate what is 
done by the majority of the players in the automotive sector [1]. Indeed, autonomous cars often rely on a set 
of diverse sensors (e.g., visible cameras, LiDARs, and RADARs) and their corresponding algorithms (e.g., 
multimodal sensor fusion) [2]. In the case of helicopters and other flying machines, especially if certified for 
civil or commercial use, the enabling of autonomous flight will be even more gradual than in the automotive 
sector. This aspect is in line with the technology and international regulation development. In commercial 
helicopters, about 40% of total accidents between 2009 and 2018 were due to low situational awareness [3]. 
More specifically, prior to the former analysis, EASA reported that quite a number of rotorcraft accidents 
occurred due to a degraded visual environment (DVE) scenario [4]. This problem occurs with high 
correlation with lightweight, single-engine piston-powered rotorcrafts with a relatively inexperienced pilot. 
Therefore, we believe that a first step towards enabling autonomous flight on helicopters could be the 
enhancement of the environmental situational awareness of the pilots. Unfortunately, testing and integration 
of different sensors on helicopters suffers of two major problems: 

1) It is very costly both financially (1 hour of flight of a prototype helicopter can cost more than 5
kEUR) and environmentally (1 hour of helicopter flight can generate more than 850Kg  of CO2 [5])

2) It is not possible to cover edge (when an operating parameter is at extreme level) and corner (when
parameters are outside normal operating conditions) cases adequately. According to our pilots, often
corner cases are compromising their flight and putting the crew and machine at risk (e.g., takeoff
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and landing in brown- and white-out conditions). 

In this work, we present an approach that mitigates these two problems by relying on a high-fidelity physics-
based sensor simulation environment (see Figure 1).  

Figure 1: The workflow of our approach - The first step is the identification of the specific 
mission requirements depending on the mission to be tackled (e.g., search and rescue operation 

in a mountainous environment). From the mission requirements, the next step is the definition 
of the sensing requirements leading to the generation of the sensor parameters (e.g., 
camera/LiDAR/RADAR field of view and resolution). The sensors are deployed in an 
environment fitting the mission requirement (e.g., alpine) and the specific algorithm 

development begins. 

2.0 OUR APPROACH 

In the last decade, we have witnessed much effort in the development of photorealistic simulators [6]–[8]. 
However, only few of them are capable of simulating with high fidelity the behaviour of a real-world 
camera, focusing more on reproducing what humans consider realistic. Moreover, they typically lack other 
sensor modalities, such as sensors operating at a shorter wavelength (e.g., infrared cameras, RADARs). To 
the best of our knowledge, almost none of them are capable of high-fidelity physics-based simulation of 
sensors. This gap is even more prominent considering degraded visual environment scenarios simulation. 
Nonetheless, even if in simplified simulation environments, several works have highlighted how by 
increasing visual cues to pilots can improve their situational awareness [9], [10]. As we mentioned in Section 
1.0, our approach leverages a synthetic simulation environment capable of simulating several sensor 
modalities such as visible cameras, LiDARs, and FMCW RADARs. Regarding the latter, we noticed that 
they attracted a lot of attention in the last years. This interest is certainly driven by the automotive sector and 
some datasets including LiDAR, visible cameras, and RADAR are already available [11], [12]. However, 
being mainly tailored to the automotive sector, currently available datasets are not fully representative of the 
scenarios of our interest. Indeed, there is a lack of annotated data for small objects, flying objects, and highly 
diverse scenarios and we believe that our simulator will also help to fill this gap. In summary, the simulator 
allows to (i) generate annotated datasets and (ii) test autonomous-flight algorithms with different sensors in 
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several scenarios at a lower cost compared to real-world flight tests, since it does not need flying any real 
helicopter (at least in a preliminary phase). Figure 1 depicts the workflow we propose to develop our 
autonomous-flight algorithms. Our approach entails two building blocks: 

1.0 We are currently developing a software suite able to leverage the simulator capabilities for the 
analysis and fusion of the output of several simulated sensors. This element will allow us to show to 
the pilots a type of information that they would otherwise not be able to gather (e.g., the presence of 
a cable outside the pilot’s field of view in takeoff and landing phases). This kind of information will 
increase the safety of the crew and the flying vehicle. 

2.0 Since the simulation environment we chose is not yet capable of high-fidelity simulation of DVE 
scenarios, we are planning a real-world experimental test campaign with real sensors in controlled 
DVE scenarios (e.g., artificial snow, fog, rain). This element will allow us to quantify the effects of 
DVE conditions across all the different sensor modalities. Up to our knowledge, these tests will be 
among the first in the aerospace sector and are similar to tests performed for example for LiDARs in 
the automotive sector [13]–[16]. Our ambition is to gather data from all the sensor modalities 
synchronized, yielding a potential advantage for civil and military next generation Leonardo 
platforms. 

3.0 PRELIMINARY RESULTS 

The work presented in this abstract is ongoing and we have currently preliminary qualitative results 
regarding the first point described in Section 2.0: the development of the software suite revolving around 
the physics-based simulator. We explored three main directions related to three sensor modalities: (1) a 
geometry-based LiDAR/Camera fusion (see Figure 2), (2) an image semantic segmentation architecture 
(see Figure 3), (3) a software to interpret the measurements of a FMCW RADAR sensor starting from raw 
data (see Figure 4). 

Figure 2: Geometry-based LiDAR processing and camera projection onto LiDAR point cloud - Images from 
the physics-based camera (left) are projected onto the data of the physics-based LiDAR (center) and an 
algorithm, combining point cloud local geometric features while being aware of the dimension of the 

helicopter, identifies feasible non-conventional landing spots (right). 
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Figure 3: Image semantic segmentation architecture workflow - The rendered image (left) is the 
output of the simulator and it depends from the parameters of the simulated camera (e.g., 

resolution, field of view, color filter array (CFA)). Together with the rendered image, the 
simulator is capable of providing also a segmented image (center) that serves as a ground-truth 

of a dataset used for training, validation and test of our sensor-processing pipeline, including 
deep learning-based computer vision solutions. The figures on the right are examples of outputs 
from the computer vision pipeline. Note: the figures on the left and center are only examples and 
they are not part of the training used to train the architecture that we used to infer the figure on 

the right. 

Figure 4: RADAR processing pipeline - Range-azimuth (left) and range-velocity plot of a RADAR 
synthetic acquisition in a test simulated scenario with three targets. Elevation is not shown, 

although available in our RADAR processing pipeline. 
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4.0 CONCLUSION AND FUTURE WORK 

This abstract presents an approach to developing autonomous-flight functions based on both synthetic and 
real-world multimodal sensor data. The ideas discussed above are not novel in other sectors but, up to the 
authors’ knowledge, have not been applied towards the enabling of autonomous flight of helicopters and 
other certifiable flying machines yet.  
We will continue developing our autonomous-flight functions and we will keep improving the fidelity of the 
environments that we will use to test these functions. In particular, advanced multi-modal fusion techniques 
among the various sensors will be explored and implemented, such as fusing LiDAR data with RADAR 
output [17]. Regarding the image semantic segmentation, we will test different algorithms to understand 
which one fits better our needs (e.g., small objects, flying objects, highly diverse scenarios) [18].  One of the 
main challenges remains the capability of developing algorithms that are embeddable on a real helicopter or 
other flying machines with more stringent size, weight, power and cost constraints. 
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